NETKOLL Nätberäkningsprogram

VERSION 8.7

http://www.netkoll.com anders.eriksson@datorsam.com 0708-568235 NETKOLL har tagits fram för att underlätta genomförandet av de nödvändiga, komplicerade beräkningarna för såväl projektören som installatören.

Programmet är utvecklat för Windows alla operativsystem och stora ansträngningar har gjorts att få det lättanvänt.

Det skiljer sig från liknande program på marknaden genom att det hanterar alla spänningar och att hela nätet kan beräknas på en gång och inte bara en eller två sektioner åt gången.

🖷, Matningspunkt	×
<u>N</u> amn på matningspunkt: SKOLAN	OK Avbryt
Kortsleffekt matande nät MVA: 50	Avancerat
Tomgångsspänn nedsida Volt: 400	Typ av <u>m</u> atning © Dyn-koppl transf
Tr <u>a</u> nsformatorstorlek kVA: 500	🔿 Dzn, Yzn 🛛 transf
<u>R</u> -värde jordslutn nedsida ohm: 0,004983	C Yyn-koppl transf
X-värde jordslutn nedsida ohm: 0,016868	C Intag utan transf
Utnyttiningstid timmar/år: 4000	Spänningsfaktor c
<u>S</u> ammanlagringsfaktor: 1	C 0,95 © 0,75
Lastfaktor: 1	C 0,90 C 0,85

Inmatningsbild på matningspunkten (grunddel)

🚔 Avancerat	
Impedansvinkel på matande nät, grader:	45 OK
Resistansökningsfaktor matande nät:	1,25 Avbryt
Antal parallella transformatorer, st:	1
Transform. kortslutningsspänning, Uk %:	5
Automatisk spänningsreglering:	
Isolerad nollpunkt (IT-system):	
Sä <u>k</u> ringstyp:	IFÖ 💌
Potentialutjämning i matningspunkten:	🖲 Nej 🔿 Ja

Inmatningsbild på matningspunkten (avancerat)

Tanken bakom programmet är att det skall kunna användas av både ovana och mera avancerade tekniker. Det finns därför en grunddel med förinställda värden, som ligger "på säkra sidan" men också mer avancerade möjligheter om man vill räkna exakt.

Det enda ingångsvärdet som behövs för en nätberäkning är kortslutningseffekten I matningspunkten. Om det finns fler uppgifter tillgängliga går det att i avancerat läge ange impedansvinkel på det matande nätet, kortslutningsspänning på transformatorn och inställning av automatisk spänningsreglering, som kompenserar för spänningsfallet I transformatorn.

När det gäller sektionerna på den installation som skall beräknas, behövs bara ledningstyp, area, längd och förväntad last. Med sektion menas ledning plus efterföljande central/knutpunkt eller transformering.

7 ledningstyper täcker det som finns på marknaden och ska anges som typ av fasledare och återledare, t.ex. Al/Cu, Cu/Cu, Al/Al, Friledning Cu/Cu, Friledning LegAl, Isolerad lina BLL och BLX, hängkabel ALUS, kanalskenor av olika fabrikat samt blanka skenor med olika märkström.

Ledningssektion		
ancerat Ångra Infogalföre Ändralsektis	en Utöka nätet	
GRUPP NUMMER: 1	SEKTION NUMMER: 1	
Föreg. lastpunkt: Skolan	Denna lastpunkt: Skåp 1	
Ny lastokt	Ledningstyp (17): 1 = Al/Cu	•
Nu transformator	Easarea i mm²: 150	
	<u>Å</u> terledararea i mm²: 41	
Ny reaktor	Ledningslängd i <u>m</u> : 300	
Avsluta inmatn	Antal parallella ledningar: 2	
Avbryt	Effekttuttag kW: 36	
Avancerat	<u>C</u> os fi i punkten: 0,8	
Början av ledningen	Slutet av ledningen	
C Inget skydd	C Inget skydd C Sektionering	
C Gemensamt skydd	C Gemensamt skydd	
Individuellt skydd	Individuellt skydd	
Skyddets märkström A: 125	Skyddets märkström A: 80	
Text på ledning: GRUPP 1	Text på ledning: INK	

Inmatning av sektion i form av ledning och knutpunkt (grunddel)

I sektionsbilden under menyn "Avancerat" väljs potentialutjämning, där man matar in längsgående utjämningsledare och eventuell jordning för beräkning av beröringsspänningen i knutpunkten.

🐃 Potentialutjämning	
<u>D</u> enna lastpunkt: Sk.	åp 1
Area på utjämningsledaren, mm²: 95	
Typ av ledare (14): 1 =	Cu 💌
Längd på utjämningsledaren, m: 30()
Potentialutjämning i lastpunkten: 📀 Ne	j 🗘 Ja
ОК	
Avbryt	

Inmatning av underlag för potentialutjämning och beröringsspänning

Mer detaljer om sektionen matas in under avancerat. Exempel är önskad utlösningstid, val av andra skydd än säkringar, införande av kondensatorbatterier och inmatning av parallellarbetande generatorer.

🐃 Avancerat - Skåp 1				_ 🗆 🗵
	Reaktans X' i ansluten generator/motor, procen	nt: Z	20	
	Märkeffekt på anslute generator/motor, kV	en [2 'A: [2	200	
Anslute	en <u>k</u> ondensatoreffekt, kVA	Ar: 0)	
	<u>Typ</u> av skydd i sektione	en: 🛛	Säkring	•
ОК	<u>U</u> tlösningstid, se	ek:	5,0	•
<u>A</u> vbryt		Avbro Hel å	ott i återleda återledare	iren © O
<u>L</u> astdim			– <u>S</u> pännings	faktor c
			0 1.00	0,80
			0,95	• 0,75
			0,35	0,70
			Genere Individe	ll ⊙ µell O

Inmatningsbild på sektion (avancerat)

I avancerat-bilden finns också dimensionering med avseende på ledningens strömvärde. Knappen "Lastdim" används för att dimensionera enligt SS 436 40 00. I funktionen "Lastdim" hanteras förläggningssätten A1, A2, B1, B2, C, D1, D2, E, F och G och dessutom kan man hålla reda på om det är flerledare eller enledare i plan förläggning, i horisontell förläggning eller i triangelformation.

Att räkna för hand och hålla reda på alla tabellerna är inte helt lätt, men i NETKOLL är det inga problem att få fram strömvärdet.

Standardvärdet i NETKOLL är förläggning i luft på enkel stege, omgivningstemperatur 26-30 grader och anhopning av 3 kablar utan avstånd (tät förläggning på stege), vilket ger E-förläggning med faktor 0,82.

Vid andra förutsättningar går man in i "Lastdim" och klickar för de ställen där kabeln ska förläggas eller är förlagd. NETKOLL räknar sedan ut vilket förläggningssätt som ger det lägsta strömvärdet och tar detta med sig till enlinjeschemat.

🖷 Dimensionering av ledning till Skå	p 1 enligt SS 436 40 00	×
KABELTYP FAS/ Flerledare Image: Antal parallella kablar 2 Fasard	ÅTERLEDARE ISOLERING ISOLERING PVC Mineral åtkom- lig för beröring Image: Compare the second	Förläggningssätt som ger lägsta strömvärde: EOK Beräknad reduktionsfaktor: 0.82 Beräknat individuellt strömvärde A: 201
FÖRLÄGGNING I LUFT Omgivningstemperatur *C: 26-30 DIREKT UTAN RÖR i värmeisolerad vägg i dörrfoder, fönsterkarm i urfräsning i vägg i hålrum i el- och kabelkanaler i hålrum i öppen eller ventilerad kabelkanal i övriga kabelkanaler i installationsgolv infälld i murvägg under undertak av trä utanpå vägg, tak, golv på operforerad kabelränna	Anhopning av kablar 3 Image: På perforerad kabelränna 6 Image: Horisontellt C Vertikalt Image: Utan avstånd 6 ANTAL RÄNNOR 1 Image: På stege eller trådgaller Image: Utan avstånd 6 Med avstånd 1 Image: ANTAL STEGAR 1 Image: hängkabel, isolator 1	FÖRLÄGGNING I MARK, VATTEN Marktemperatur °C: 11:15 ▼ Värmeresistivitet 1,0 ▼ K*m/W: Förläggningsdjup m: 0.25:0,7 ▼ Förläggningsdjup m: 0.25:0,7 ▼ DIREKT I MARK Anhopning av 2 Avstånd mellan kablarna © Inget avstånd © En kabeldiameter © 0,125 m avstånd © 0,250 m avstånd © 0,500 m avstånd © 0,500 m avstånd
i värmeisolerad vägg □ i dörrfoder, fönsterkarm □ i hålrum □ ingjutet i murvägg	 i oventilerad kabelkanal i öppen eller ventilerad kabelkanal i golv utanpå vägg, tak, golv 	Avstånd mellan rören C Inget avstånd C 0,25 m avstånd C 0,50 m avstånd C 1,00 m avstånd

Inmatningsbild av hur lågspänningsledningen är förlagd för framtagning av strömvärde

Högspänningsledningar dimensioneras enligt SS 424 14 16. Som standardvärde används det antal ledningar som finns i sektionen. Andra förutsättningar väljs i inmatningsbilden för högspänning. NETKOLL känner automatiskt vilken spänning som gäller och väljer rätt inmatningsbild.

, Dimensionering av högspär	nningledning till Skåp 1			
KABELTYP Flerledare	FAS/JORDLEDARE	ISOLERING	ENLEDARKABEL Sluten skärmkrets Öppen skärmkrets	OK Avbryt
Förläggningssätt som ger lägsta strömvärde: I mark - FÖRLÄGGNING I LUFT	Beräknad or reduktionsfaktor:	1,79 Beräknat indiv strömvärde A: ning av	viduellt 245 FÖRLÄGGNING I MA	RK, VATTEN
I OCH PÅ BYGGNAD Mot byggnad på golv utan avstånd mellan kablarna Mot byggnad på golv med avstånd mellan kablarna Mot byggnad på vägg utan avstånd mellan kablarna Mot byggnad på vägg utan avstånd mellan kablarna	 Kablar På hylla av metall Utan avstånd mellan kablarna ANTAL HYLLOR 	C Med avstånd mellan kablarna	Värmeresistivitet K*m/W: Förläggningsdjup ✓ DIREKT I MARK Anhopning a kablar Avstånd melk ⓒ Inget avsl	1,0 • m: 0,25-0,7 • v 2 an kablama
Mot byggnad på vägg med avstånd mellan kablarna Mot byggnad i tak utan avstånd mellan kablarna Mot byggnad i tak med avstånd mellan kablarna	 På stege Utan avstånd mellan kablarna ANTAL STEGAR 	C Med avstånd mellan kablarna	C 70 mm av C 250 mm a I RÖR I MARK Anhopning Avstånd mella	stånd vstånd av rör 1 an rören
UTOMHUS I DET FRA			C Inget avs C 70 mm av C 250 mm a	ånd stånd vstånd

Inmatningsbild av hur högspänningsledningen är förlagd för framtagning av strömvärde

Resultatet av beräkningen visas som ett enlinjeschema på skärmen enligt bilden på nästa sida.

Förutom de inmatade värdena redovisas effekt och ström I ledningarna, spänningar och spänningsfall, kortslutningsströmmar samt jordslutningsströmmen **I***j*, som används för att räkna ut vilket högsta skydd som gäller med avseende på utlösningsvillkoret.

Förutom de värden som syns på enlinjeschemat finns en tabell med samtliga resistanser, reaktanser och impedanser som kan vara av intresse att veta. Alla delar går att skriva ut på skrivare och i många fall kan uppgifterna sparas i Excel-ark, som AutoCad-filer och som Word-dokument.

I den utförliga manualen som följer med programmet, finns anvisningar för hur man dimensionerar en elinstallation med hjälp av NETKOLL, eller räknar ut vad som händer i nätet vid direktstart, eller Y/D-start av elmotorer.

I manualen finns också anvisningar för hur man hanterar installationer med dvärgbrytare och MCCB när genomsläppt energi i kA²s vid en kortslutning blir högre än vad ledningen tål.

Nätberäkningsdelen används för att bestämma utlösningsvillkoret, för att få fram strömvärdet i ledningarna, för att se spänningsfallet, samt för att dimensionera anläggningens kortslutningshållfasthet med avseende på den trefasiga kortslutningsströmmen.

MATNINGSPUNKT Skolan 50 MVA 45° Uk = 5 % Dvn Uo = 400 V Utnyttjningstid = 4000 timmar Spänn-faktor C = 0,75 Sammanlagr-faktor = 1,00 Po = 0.870 kW Wo = 7621 kWh Pf = 1,184 kW Wf = 2496 kWh 500 **kVA** P = 52,1 kW Cos fi = 0,81 I = 93,5 A Lastfaktor = 1,00 U = 398,1 V Uf = 0,48 % Ik3 = 12297 A Ik2 = 7785 A Ij = 9633 A 🖫 125 Alledning Säkring, Utl-tid 5 s, IFÖ, Max 125 A. (Utl-villkor 125 A. Strömvärde 201 A) 300 meter 2 // 150 + 41 Al/Cu, Förläggn E, Faktor 0,82. (Skydd i varje ledn i båda ändar) P = 52,1 kW Cos fi = 0,81 I = 93,5 A 80 Avledning Säkring, Utl-tid 5 s, IFÖ, Max 80 A. (Utl-villkor 80 A) INK1 P = 36,0 kW Cos fi = 0,80 Qc = 0,0 kVAr I = 66,2 A C = 0,75 Skåp 1: U = 392,5 V Uf = 1,87 % lk3 = 5018 A lk2 = 878 A/skydd lj = 396 A/skydd (avbri återled) UTIC 1 5G $\stackrel{_{
m N}}{\Rightarrow}$ 18 A Dvärgbryt typ C, Max 20 A, Min Icn = 5 kA. (UtI-villkor 25 A, Strömvärde 21 A) 30 meter 2,5 + 2,5 Cu/Cu, Förläggn E, Faktor 0,82. (Skydd i matningsänden) P = 5,1 kW Cos fi = 0,66 I = 11,4 A I²t = 0,227 kA²s OBS!! P = 5.0 kW Cos fi = 0.65 Qc = 0.0 kVAr I = 11.4 A C = 0.70 Pump 1: U = 389,3 V Uf = 2,67 % Ik3 = 900 A Ik2 = 438 A/skydd Ij = 253 A/skydd 🛄 35 A. Säkring, Utl-tid D,4 s, IFÖ, Max 63 A. (Utl-villkor 63 A, Strörn värde 84 A) 50 meter 10 + 10 Cu/Cu, Förläggn D2 i mark, Faktor 1,52. (Skydd i matningsänden) P = 10,1 kW Cos fi = 0,90 I = 16,5 A H-BRVT P = 10.0 kW Cos fi = 0.90 Qc = 0.0 kVAr I = 16.5 A C = 0.75 C2: U = 389,8 V Uf = 2,54 % Ik3 = 1756 A Ik2 = 923 A/skydd Ij = 542 A/skydd

Redovisning av beräkning på skärmen

Ni kommer att finna många andra finesser inbyggda i NETKOLL, som tex redovisning av effektoch energiförlusterna (**Pf** och **Wf**) i nätet, omvandling av energi till effekt med Velanders formel, beräkning av jordfelströmmen i icke direktjordade högspänningsnät, transformeringar valfritt i nätet osv.

NETKOLL fungerar dessutom för såväl lågspänning, som mellanspänning och högre spänningar.

NETKOLL har sedan första utgåvan i januari 1995 byggts på med funktioner som räknar på skydd med mer än 5 sekunders utlösningstid för extrema elverksnät, beräkningar med hel återledare i felstället vid parallella ledningar, lastdimensioneringsrutin som tar fram strömvärdet för både lågspänningsledningar och högspänningsledningar enligt gällande standard

Vidare har vi lagt till funktioner för att hantera trelindningstransformatorer, reaktorer, potentialutjämning samt selektivplanedel för att ställa in skydd för brytare, så att bara den felaktiga anläggningsdelen kopplas bort vid ett fel.

SELEKTIVDELEN

	Namn på skyddet R	ACIB	Ta bort skydd Spara skydd	Stäng
Registrerade skydd	Tup av skudd (1, 3)	Relaskydd 🔹		
MPRB C1 MPRB C2 MPRB C3 NZM 6-25 A	Fabrikat på skyddet	B	KURVSTEG 1 Minvärde maxvärde Ströminställn. (A) 0,1 2.5	Konstanttid
RACIB	Antal kurvsteg	Märkström (In)	Tidsinställning (S) 0,1 12	
RIDA SACE		Handhavande	Kurvtyper 🗖 RI 🗖 LI 🧮 NI 🗖	
U Kösnings kil			KURVSTEG 2 Minvärde maxvärde	Inverttid
100		Datapunkter för kurvsteg:	Ströminställn. (A) 0,1 2,5	
50			Tidsinställning (S) 0,05 1,1	
20		Ström (A)	Kurvtyper IP RI IP LI IP NI IP	
10		Tid (S) Min Max		
			KURVSTEG 3 Minvärde maxvärde	Momentant
			Stroministalin. (A) 2 30	
Q.5			Tidsinstallning (S) 9/1 1/4	
0.1			KURVSTEG 4 Minvärde maxvärde	Momentant
0.05			Ströminställn. (A)	Incidentaria
0.02			Tidsinställning (S)	
0.01		Läng till nunkter		

Hantering av reläskydd, brytare och säkringar i databasen

NETKOLL är integrerad med en selektivplanedel, som använder nätet från beräkningsdelen för att hämta knutpunkter, spänningar och kortslutningsströmmar vid presentation av kurvorna i diagrammen.

Kurvorna används för att se hur de olika skydden i en anläggning samverkar vid ett fel. För absolut selektivitet mellan två skydd krävs åtminstone 0,2 sekunders tidsdifferens.

I den medföljande relädatabasen finns över hundra reläskydd, brytare och säkringar registrerade.

Selektivmodulen består av tre delar – en där reläskydden hanteras, en där sektionerna kopplas ihop med reläskyddet, samt en där man lägger in kurvorna i diagrammet.

Till dessa tre delar är sedan kopplat utskriftsrutiner för diagram och rapporter.

I bilden "Reläskyddsregister" ovan registreras reläskyddet med upp till 4 steg. Gränserna som skyddet är gjort för anges som min- och maxvärde och man kan också ange MCCB-kurvor genom att mata in tids- och strömvärden.

De olika stegen presenteras sedan i "Registrera skyddsobjekt", där man anger om steget ska vara på eller av och vilken inställning skyddet ska ha.

I delen "Station:" tas uppgifterna om spänning och kortslutningsström från beräkningsdelen.

I Reläskyddsregistret ligger originalet av skyddet. Det kopieras sedan via rutinen "Registrera skyddsobjekt" till olika platser i anläggningen där skyddsobjekten finns. De objekt som lagts in återfinns under "Skapa diagram" där man sedan väljer vilka kurvor som ska synas i diagrammet.

Antalet diagram so	m kan läggas upp	är inte begränsat.
--------------------	------------------	--------------------

(egistrera skyddsobjer	kt	
Station:		
ISKULAN	⊥ U: 10500 V	
	Ik: 4275 A = 77,747 MVA	
Skyddsobjekt:		
	Strömtransformator:	Spara
Fack 1	Primär A: 600	
	Sekundär A: 5	Ta bort
		Stäng
SPAJ 141 C 💌	KURVSTEG: 1 C På 2 C Av 3	C Av C Pá C Av C Pá
Fabrikat	Konstauttid Investid Moreov	
ABB		
	E 2 A 1	
Basström A (In):	Primär A: 600 600 4800	
Basström A (In): 5	Primär A: 600 600 4800 Inställt värde: 1.00 1.00 1.00	
Basström A (In): 5	Primär A: 600 600 4800 Inställt värde: 1,00 1,00 8,00	
Basström A (In): 5	Primär A: 600 600 4800 Inställt värde: • •	
Basström A (In):	Primär A: 600 600 4800 Inställt värde: 1,00 1,00 8,00 Kurvtyp: K EI K	

Bild där facket i stationen kopplas ihop med skyddet

pa diagram				
Lägg till diagram:	Registrerade diag	ram:		
 	Diagram 1			Fri diagramtext
Projekt som diagrammet a	ivser:	Diagram skapa	at av:	
Anläggning:			n Utažus:	Visa diagram
SKOLAN		2010-08-01	ligava.	Radera diagram
Stationer och skydd				
Skåp 1 SKOLAN	Ink1			Lägg till kurva
JINDEAN	Utg3	<u>≭</u> Inkommande	brytare	Ta bort kurva
				Stäng
Diagramkurvor	10. 24			
SKOLAN Skåp 1 Skåp 1 Skåp 1	Utg1 Ink1 Utg2 Utg3	1254	🗖 Nolla e	ətikettplac
			↑ Änd ord	dra rit- ning
TSTART	TSTOPP ISTAR	T ISTOPP	DIAGRAMM	ET SKA VISA:
0,01 S	100 S 1	100000	C EFFEKT	MVA
	•		STRÖM (A) VID 400
	· · · · · · · · · · · · · · · · · · ·		C IODOCCI	CTOON

Bild som visar uppbyggnaden av kurvor i diagrammet

Diagram som skapats i NETKOLL

I Diagram 2 ovan syns hur kurvorna presenteras på skärmen. Kurvorna ritas fram till den 3-fasiga kortslutningsström som kan uppstå vid ett fel, vilket visas av kurvorna LSP T och HBRYT.

Det gör att man exempelvis kan se i diagrammet vilken gränsström ett momentanskydd på uppsidan av en transformator ska ställas in på, för att inte känna ett fel på nedsidan.

Skydd för 10 kV spänning visas med röd färg och lågspänning med blå färg. I ovanstående diagram visar högspänningskurvorna ABB skydd typ SPAJ 141C med inställning EI = Extremely Inverse. Lågspänningskurvan är en ABB effektbrytare typ Sace med skydd PR1/P.

Skyddet är registrerat med två strömvärden, vilket ger ett spridningsområde för kurvan.

Bland finessena i diagrammen kan nämnas enlinjeschemat som identifierar skyddens placering i selektivkedjan, markering av max kortslutningsström på önskade platser och införande av kurvor för en kabels kortslutningshållfasthet enligt SS 424 14 07.

Det går också att sätta in förklarande fri text längst ner i rutan till höger och att byta logotyp.

NETKOLL kan beställas från vår webplats:

http://www.netkoll.com